CLOUDTRAN

Scalable Transaction Programsin the Cloud

A Technical Overview

December 2009
Matthew Fowler
Director, NT/e

Contents

1 CloUudTran @ SUMIMAIYccooiiiiiiii e eeeeime e e eeeeeit e e e e e e eesenia s e e e e ennmnnaaaaaeeeeennes 2
2 The Story Behind CIOUATIANcooviiiii e e e 3
T =11 01115 To] (oo |2 PP 3
4 Commercial Drivers for In Memory Data Grid (IMDG)............ccooeeeiiiiiiieiiiiieeeeeenn, 4...
I @ (01U T I I =1 I 0= T [o PP 6
I O (o 10 o B I = g KSF= ol 1T L PP 6
7 The IMDG-DataStore Mapping.cieeimmmmmeeeieeeeiiee e e e e e e e e e e e eaaneeeanans 9
8 The ORM (Object-Relational Mapping) LAY . ceevuneeeiiiie e 10
LS B 0] o T 11 153 o] o RSP 13
Appendix 1 — PerformanCe TESEScciiiii e e e 14
Appendix 2 — Positioning Relative to GigaSpaces Xl Storage as a Service 15

1 CloudTran : Summary

CloudTran is a middleware product that enables davealopers to build scalable commercial
applications for the Cloud quickly and easily.

Public and private Clouds are increasingly popuiat,developers looking to build mission-
critical applications that take advantage of cléeastures (scalability, commodity hardware)
have faced a problem: there was no infrastructup@art to

» overcome the inherent difficulties of distributedgramming
» provide fast, reliable data transactions combimm@mory nodes and storage services.

Now CloudTran overcomes this problem with its ueideatures :

* ORM : the Object-Relation Mapper layer providesnapde Java view of distributed
data. It finds data in the grid, collects it foetapplication and then redistributes any
changes;

* In-Memory - Storage : CloudTran automatically sfems data between storage
services and in-memory data formats. RDBMSs apparted by default and plug-in
points are provided for non-RDBMS storage systems;

» Cloud Transactions : CloudTran is the first TratissmcMonitor specifically designed
for clouds, providing ACID guarantees coordinaterbas distributed nodes,
messaging and storage services.

The solution is highly reliable as it provides dfeubetween the customer-facing application
and back-end resources, such as databases orctransystems. This means that the
application runs even when there are spikes ificraf back-end resources are unavailable.

CloudTran complements other options for applicatleselopment in the cloud. It is built on
the GigaSpaces eXtreme Application Platform (XAR]J ao can be used to build scalable,
superfast (sub-millisecond) applications. It cEsode used in conjunction with Storage As
A Service. So architects can combine all thesmoptto achieve price, performance and
guality of service goals (see Appendix 2).

This technical overview is for architects and depels of applications who are tasked with
building commercial applications in public or prigaclouds, and are interested in middleware
solutions to deliver higher performing applicati@igreatly reduced cost.

2 CloudTran Technical Overview

2 The Story Behind CloudTran

CloudTran story started when | was in a GigaSpagpeéste in September 2008, about their
"application server" features - how to port youtB2application to work in the cloud and be
scalable.

The "transactionality” word was used ... but theswised in the sense of "in-memory
transactions”. Nothing that old men with an ACl&abase would think of as a transaction.

Coming from a J2EE background, | looked for a sofuto allow application programmers to
easily write big, fast applications on the clouthggransactions. The more | looked, the
more it seemed there wasn't one, and no appetitmfoeither. There were three stances from
the cloud camp:

« "You don't understand" - you don't need to persisinory-base transactions to a
database, because the grid is so reliable.

Right [I thought] - tell that to your CIO.
- "Eventual, non-consistent save is good enough".

Well, that's at least got the 'D' part of ACIDbut nothing else;
« NoSQL - solve the scalability and consistency peabin a different paradigm.

Shame about the databases and information feedsltiv@ commerce
and decision-making today.

There was also deep pessimism about distributeddcions in a cloud environment, e.g.
"they're too slow and complicated" (Héller) or "tslow and unreliable” (Helland). So it
sounded like a problem crying out for a solutiaven if it was difficult!

As it happened, working on the problem was slighilgkier than we thought - it took us
three attempts to get a workable design! Desitaildd the "atomicity" and "simplicity"
tests. Design 2's problem was coordinating fail@rel isolation in distributed nodes at a
reasonable cost and speed. Design 3 (like Goldilporridge) was just right. Our thanks to
Dan Stone (of scapps.co.uk) for: destroying desigasd 2; pointing out many abstruse
wrinkles in design 3; and instilling the "missioritical" values needed to persevere with
achieving reliable transactions.

The other part of CloudTran is the O-O programmewy When | read Pat Helland's
Apostatepaper, my view was that his proposed solutiorseesally, application

programmers doing robust distributed programming laiv level - was not the best way. We
have been building model-driven development envirents for the last 8 years, and it was
relatively easy to port this environment acrosg&®CloudTran environment.

3 Terminology

In the technical discussions in this paper, wegngkandcloud interchangeably: they are
groups of machines connected by high-speed LAN$, additional machines readily
available. In other words, the commercial diffexesbetween grids, public and private
clouds are not relevant to our discussion. Thedkeyacteristics are the high speed of the
interconnect, so that the groups of machines can #olargely (but not completely) reliable
unit.

3 CloudTran Technical Overview

There aredata gridsandcompute grids Many companies deploy these as distinct laysers,
that large calculations can be farmed out acrassdmpute grid, using data that is accessed
easily from the data grid.

This sort of architecture is not optimal for apptions where calculations are simpler: then
the requests from the compute grid to the datalmg@bme a performance bottleneck.
Applications are quicker and cheaper if the compimig data functions are combined into a
single grid. This is Google's approach to buildexge-scale systems; it is also a key
component oSpace-Based Architecture (SBAljscussed below.

The other major architectural shift behind Cloudiisthe need to store tisystem of
Recordin the data+compute grid. The System of Recotdagpermanent, live data - the
lifeblood of many organisations. As we will seextehere are situations where this is the
only way to meet size and performance requiremeWs.use the terrim-Memory Data
Grid (IMDG) to mean a data+compute grid holding theesysof record.

The IMDG collapses the architecture so (a) all ssagy information is in-memory and (b) it
removes the communication hop to the databasetastbiv disk accesses. The bottom line
is that IMDG systems are 10- or 100-fold fastenttieeir tiered, database-base cousins.

4 Commercial Drivers for In Memory Data Grid (IMDG)

There are a number of reasons to use an IMDG. s@uon looks at the drivers, and the cost-
benefit equation.

4.1 IMDGs When All Else Fails
A common pattern in the evolution of successfulliapgions is to

1. Start with a simple database architecture

2. Address performance issues with caching

3. Finally, when the size of the application and genbase reaches the point where the
user experience degrades unacceptably, move dRG]

Many developers apply a lot of effort in stageusing all the tricks in the book to avoid
using the IMDG approach. So IMDGs have been thal fiesort.

Of course, using an IMDG is not acceptable for gwgplication. YouTube wouldn't dream
of putting 50MB videos into an IMDG. A free "stosed share your photos" site couldn't
afford to put billions of photos into memory. Howee, commercial data-oriented
applications usually do not have such large dajairements. A company with 100,000
employees and contractors could store the comptafdoyee database, at 5Kb per record, in
500Mb - which is certainly amenable to in-memograge.

Relatively few applications today need to use abD@®/ However, many forces are driving
more and more applications in this direction, sash

* the size of markets;

» the continued growth in worldwide numbers of molpl®nes and their use for
charged transactions and data applications;

* the increase in the number of automated transaction

4 CloudTran Technical Overview

4.2 IMDGs As A Competitive Weapon

The previous section viewed the IMDG as the las bf defence, but it is possible to turn
defence into attack.

Consumers are getting used to fast response tinteara increasingly frustrated by slow
sites. In 2006,htp://www.akamai.com/dl/reports/Site_AbandonmeimaF Report.pd) 28% of visitors
would abandon a site if a page took longer than $egonds to load. By 2009
(nttp://www.akamai.com/2seconjdthe figures were 40% of visitors leaving aftege®onds.

Fast response times don't just stop visitors lepvimey can set an application apart from its
competitors, and create a positive and enjoyalpermence that draws visitors back to a site.
Using an IMDG architecture in an enterprise appilcagives the platform for performance
and fast response times to users.

4.3 The Cost Of IMDGs

My instinctive reaction when | first heard about@ was, "that's crazy - it's going to cost a
fortune". But those instincts were forged a longetago - when main memory was
extremely expensive.

The world has changed a lot since RDBMs came t&et&@0 years ago - so much so that
Stonebrakeet al (http://db.cs.yale.edu/vidb07hstore. paffrote in 2007:

we believe that OLTP [OnLine Transaction Processing] should be considered a main
memory market, if not now then within a very small number of years. ...

In summary, 30 years of Moore’s law has antiquated the disk-oriented relational
architecture for OLTP applications.

So let's do a napkin calculation to get the ordenagnitude costing for an IMDG approach -
what does it cost to hold our 100,000 5Kb emplageerds per year in an IMDG?

To install 64GB in a server (from a large manufestyicosts roughly $8,000 at today's prices.
This means the 500Mb for the employee database $62t50, or $125 when you add a
backup (as you would). Of course, that is a @8t - the 'usable’ cost after Java's overheads
will be higher by a factor of 3 or so.

Say you bought 10 machines, 5 primaries and 5 lpaglgiving 320GB of raw information,
or say 100GB usable. The IMDG memory would co€,@80 - and give ultra-fast access to
20 million 5Kb records.

4.4 Tiered Storage In The Cloud

The above discussion has focussed on the sortashation used in transactions, while
noting that storing large lumps of data in the IMB@Guldn't be economic for many
applications.

However, CloudTran can integrate with disk storagevell. For example, our server could
have 1TB of hard disk attached, for another $8D6 times the data capacity at 1/10th the
price. Commercial clouds like Amazon EC2 havechita disk storage that effectively
comes for free. This gives an extremely low coststoring large objects - the cost mainly
being the programming.

Alternatively, an application could use a mountdidesystem that could be provided in
private or public clouds, such as Amazon's S3 (&rporage Service).

5 CloudTran Technical Overview

For applications that have a "primary" transactial®a component and a "secondary" blob
component, an IMDG plus disk-based storage makesyaattractive scalable, high-
performance, high-memory system. Some of the stated transactionally would be meta-
data for the secondary storage area, allowing ppécation to manage large volumes of
storage without storing it all in the IMDG.

5 CloudTran Design

The functionality of
CloudTran is divided into
three layers and the next
three sections describe
these in turn :

1. The Object-Oriented
View of data, so
application developers
can do their job
without having to
worry about distributed

_ programming, but still

ACID Transactions take advantages of its

performance benefits.

2. Data mapping - the programs operate on an in-meghatstore replica mapped back to a
real datastore for persistence and links to datalmasgration applications (eg ETL, data
warehousing and Bl). This implements a two-lapeimary-secondary, data mapping
feature, with the system of record in the IMDG.

3. Transactionality the most generic layer.

6 Cloud Transactions

6.1 Transaction Support

CloudTran is an add-on product for GigaSpaces XARprovides highly performant,
mission-critical and resilient transaction supgtmtal transactions In other words, one or
more create, read, update or delete operationbefmined together by a space-based
transaction, so that all operations succeed oafaihically By providing various locking
schemes, space transactions also sujguetion between the different operations of a
transaction. Furthermore, there is a sodwfbility, in that backups will also be written of
the information in a space. The last part of 'AGIBonsistency is left as an exercise for the
developer.

These transactions can also be distributed acpas®s, and are then callddtributed
transactions These transactions have the same propertiesat busignificant performance
cost (seettp:/blog.scapps.co.uk/?p=)19

If you are an architect or application programnwerdata-oriented applications, at this point
you may be experiencing the same cognitive dissmngrat | did: there's no database or other
persistent storage with these "transactions". viiedaconflict with these transactions is part

of the reason for talking about "cloud transactions

6 CloudTran Technical Overview

Finally, there is a connection to persistent steriagGigaSpaces. This is the GigaSpaces
mirror feature which is done via a single connettma database using a Hibernate mapping,
with approximate "transactionality”. The mirromgee will typically be used in conjunction
with local or distributed transactions and therefprovides strong isolation at the space and
durability - the 'I' and 'D' of ACID - but no guastaes of atomicity or consistenaythe
database.

So who needs strongly transactionality all the teathe database? And furthermore, who
needs a database anyway?

There are definitely people who don't, but an awdubf people who do, for whom it is a
"Door 1" issue. Events that will never happentdw— include :

» Intermittent hardware failure causing outages -ef@ample, Amazon S3 outage on
Jun 23, 2008 - which in an IMDG will cause eventata of the System of Record;

» acts of nature or accidents disrupting power ta dantres;

» the electrician cutting the wrong cable - everysmget a story.

Our aim with CloudTran is to make robust, trangawl persistence so easy that it is a no-
brainer for application teams.

6.2 Cloud Transactions - The Hard Truth

The general problem of cloud transactions hasn'tdmesolved before CloudTran

If coordinated transactionality at the space artti@tatabase is required, there is a two-layer
transactionality problem:

» there is the copy in the space, in-memory - thighat you need to provide
performance;

* and there is the copy in the persistent store(8iciwis durable even if the power is
switched off.

These two versions must be coordinatgth full ACID properties.

Classical 'distributed transactions' provided ti&[A properties across multiple processes or
machines. Now, in adding the IMDG layer, we ardiad another dimension to the
transactionality problem.

The transactionality problem is not restrictedne GigaSpaces SBA platform. You would
imagine that cloud providers would have stronggeation solutions, but this is not the case.
Apart from 'native’ connections to a single datab#sere is no generic, usable
transactionality capability.

Classical "distributed transactions" shobklthe answer. However, in the seminal papés,
beyond Distributed Transactiq@atwww-db.cs.wisc.edu/cidr/cidr2007/papers/cidr07piif).pPat
Helland admits he has spent many years trying talig&ibuted transactions working
effectively in large environments ... but concludes

In general, application developers simply do ngilement large scalable
applications assuming distributed transactions. MWthey attempt to use distributed
transactions, the projects founder because thempeshce costs and fragility make
them impractical. Natural selection kicks in...

7 CloudTran Technical Overview

... and natural selection is where the less fittdaanvive. This diagram illustrates the deadly
forces on the application designer :

2-2000 machines Reliability and ACID

N\

Scalability = linear Absolute performance
performance increases

CloudTran provides transactionality that will hglpu overcome the challenges of scalability,
distribution and performance in scalable appliaatio

The fact that there is no general solution to tbedtransaction problem is a symptom of
how difficult this problem is. Here are the keysm points:

6.3

support services writing into any number of nodethe cloud, from 1 to 100 or more;

handle very small and very large transactions. hatee written applications writing in
excess of 50,000 rows - so we'd like to do the sant@rger on the cloud;

minimise overhead for the happy path, because travstactions will succeed;

roll back across all nodes in the case of failaxen if a node fails as you are trying to
restore its state, to guarantee Atomicity in falgituations;

ensure all users of objects involved in a transadt different nodes get a consistent
copy of the data, possibly delaying the delivertiluhe up-to-date data arrives at the
node (Consistency). This is not just an issuespace-based architecture: the
problem will arise in general, because developéismant to use local copies of data,
whatever form they are in (i.e. space or not).ishheans that the extra dimension of
transactionality - coordinating database and in-orgraersions - applies generally in
cloud-based applications;

make sure updates from different transactions dtaa'hp on each others' data
(Isolation);

coordinate acidity at the space level with the Dlgaersion of the transaction;

handle "possible failure" - GigaSpaces spaces stayje out' and be unavailable for a
variable number of seconds, so you must handledesmpand permanent outages;

provide timeouts, so an out-of-control transactoasn't lock up resources.

CloudTran Transaction Support

CloudTran provides scalable, rock-solid, high-perfoance distributed transactions.

The transaction layer in CloudTran meets all tr>egoals set above:

Handles any number of nodes and any amount ofida@aingle transaction.

Fast commit mode. Although the usual 'secure &@ians to disk' mode can be used,
developers can also use 'secure transactions kedbap space'. This mode is about 5

8 CloudTran Technical Overview

times faster than the 'disk-first' mode and allavgngle-CPU machine to support
thousands of transactions per second.

Supports scenarios to coordinate message pasdimgevsistence operations

Plug-in architecture to support any type of peesisstore. JDBC connections to
RDBMSs are provided as standard.

Handles any number of persistent stores. Consiglsrsupported across databases.

Buffers transactions that are to be persisteds fit@ans the main application can
- handle demand spikes without getting delayedimgior the database
- continue to run at full speed even when the degalis down.

Restores in-flight transactions from a backup capthe transaction controller if a
primary node fails over to a secondary.

The IMDG-DataStore Mapping.

CloudTran automates the definition, load and stogrof the IMDG to a datastore.

The second layer of functionality in CloudTranasmap between the datastore view and the
IMDG view of data.

Having the "primary" data in an In-Memory Data Gisdhe key factor in the high
performance of the complete CloudTran solutionmblmy cases, the persistence target for
the data will be a database. However, other tgpssores, such as BigTable/Hadoop, are
becoming popular, so we cater for those too.

To support this, there are a number of unglamoneagping and support jobs that need to be
done by this layer:

Creation of Java objects to represent the in-merdatg. It does this using code
generation, which we prefer to AOP (Aspect-Orierfedgramming) approaches -
developers can see the live code and have the tojjitgrto alter the generation
templates for special situations;

Data in the IMDG is represented in user-naturahar (not datastore format).
However, it also uses foreign keys (like databaegsather than object references to
represent relationships;

Addition of fields for optimistic locking - typicBl the row version number;
Initial load of the grid from the database, aftewer failure or data restructuring;
Store of each objects as they are created or upnlze JDBC;

For non-relational datastores and messaging irtesfahis layer defines the plug-in
points and interfaces for objects to be included transaction, and for the store-
specific load and store;

Distributed primary key generator. Different keyshich can be integer or long
values, are kept for each target database/datastoeeservice in the transaction
buffer.

Where the database or JDBC are mentioned above, dhe plug-in points to support other
types of datastores.

9 CloudTran Technical Overview

In future versions, we will add support for a "lblmad" and "standing data". "Local load"
addresses the issue that the initial load of thelevgrid from a datastore will be a very
lengthy process in some cases. Storing the infioman each node will make the load
much faster. "Standing data" will be a marker preatity that this table is small and read-
only, so should be distributed from the databassltoodes.

Note that while the IMDG is implemented in Javas toes not preclude .NET clients. This
is another feature for future versions.

8 The ORM (Object-Relational Mapping) Layer

The ORM layer of CloudTran gives application deyels a higher level platform to work
on. As far as possible, the ORM layer providesmplete Java development view.

From the application developer's point of view, @M occupies the same slot as Hibernate
and JPA. However, because of the difference iuttgerlying subsystems, the
implementation of the ORM in CloudTran is quitefeiient and some concepts are different.

8.1 Something Old, Something New... Modeling and Generation

CloudTran provides modeling tools for data defiti and configuration management.

GigaSpaces is a new platform in its own right dridkes some learning. CloudTran removes
the need for application programmers to learn Giga8s immediately; using concepts and
vocabulary they are used to, programmers can bediately productive. For example,

some of the user concepts in the modeler are endiggtion, subscriber, receiver, service and
business-method.

CloudTran provides tooling in the form of an Ecégsased modeling plug-in and automatic
generation of the specialised classes requirethéapplication. From an entity

specification, CloudTran generates the IMDG data|the loader and store data classes, the
Entity object (the user view) and internal servitiebandle cross-node interactions. From
other aspects of the model, CloudTran produces Xbttfiguration files for GigaSpaces and
the application framework. What is left for thevdper after generation is to fill in the
business logic.

8.1.1 Configuration Management

As well as modeling the structure of the appliaatidevelopers can model configurations. It
is common to have a number of different deploymebotsdifferent phases of development
and deployment. Modeling the deployments givescand for future reference - as well as
generating correct deployment scripts for differemtironments. Currently, the deployment
targets are Eclipse, Unix/Linux and Amazon EC2.

8.2 The Entity Group Pattern

Entity Groups help architects optimise locality oéferences between data objects.

A common pattern in scalable systems is to grodipiesthat are tightly coupled intntity
groups (We started using this term internally in th@@iTran development, and then
discovered it is well-known!)

10 CloudTran Technical Overview

The reason for using entity groups is to put instgrof related entities together into a single
space, so that references between the entitiesatided. The key goal of the SBA approach
is to co-locate objects, thus avoiding the overtafeskrialization, network hops and tiers of
functionality; entity groups do this as far as pllssfor entities.

The grouping is application-specific, and up to deeeloper's judgement. For example, in a
Customer system, one approac€ugtomers with Order¥is to group Customer,
CustomerAddress, Order and OrderLine into one graAmpequally valid approachQtders
separate from Customeiswvould be to split the group: Customer/Addrege ione entity
group; Order/Line into another.

For scalable systems, entity spaces will need foalbitioned. To route to the correct
partition, there must be a single routeing valueafbinstances of an entity group, to ensure
that they all end up in the same partition. Inu@®ran, this is done by using the primary key
of themaster entityfor routing to a partition.

The diagram shows a space

partitioned in two. Customer is
the master entity of the entity

saveOrder(masterPK="John Smith", Order1) group; we refer to the non-
I master_entities_i_n the group as
correct pariton subordinateentities. Customer
John Smith and all subordinate
p— s— entity instances are collected in
one partition; John Adams and

L A all subordinate entity instances
are in the other. The client, to
A A Z o < save an order, must ensure that
the request can be directed to
the space where John Smith's
live entities are.

This is done by including the master entity's priyriey in the call (in reality this would
probably be a unique customer ID rather than a hahie parent/subordinate relationship is
easy to express in CloudTran's modeler:

» subordinates are nested inside their parent. drlidigram below, entity Order being
nested underneath the Customer entity means tllatr @r subsidiary to Customer.
Similarly OrderLine is nested beneath Order, soe@ithe is subsidiary to Order,
even though Order is not itself the master entity.

» there must be a to-one required relationship flieensubordinate to the parent - such
as Order.customer and OrderLine.order.

11 CloudTran Technical Overview

B ¥ plafiorm:fresource/Customerdppl/Customerdppl osm
SR Application Customerspp]

4 Jar common
-4 Processing Unit CustomerEntityGroup

Enfity Custorner

master
% Aftribute customerlD
| + Attribute FirstName
4+ Aftibute LastName
+ Relation orders
subsidiary El-4 Enfity Order
< Affribute orderBNumber
“ Relation customer
4 Relation orderLines
subsidiary = 4 Entity OrclerLine
4 Aftribute lineNumber
< Aftribute SKU
<+ Aftribute gty
4 Aftribute unitPrice
< Relation order

8.3 Distributing and finding data

CloudTran provides a simple data view for programmesolving both well-known and
new issues in data management.

In general, the instances of an entity, or entibug, will be spread across multiple spaces.
This means that the IMDG version of an object mesord relationships using foreign keys,
and a Data Access Object (DAO) must present a &agath-memory references, constructed
from the foreign keys. CloudTran supports the D&ith standard ORM features such as

* mapping between the two versions of objects (cigié¢ and DB-side)

* lazy loading and bulk loading

» cascade delete facilities, which are relevant évan RDBMS is not used
» actioning validation and integrity constraints.

CloudTran provides additional features for issines arise in distributed systems:

» the problem of locating the data. A foreign keyatrelated entity is just a number.
This must be converted into a way of addressingraqular node to access the
information; it turns out that accessing a masigityeby foreign key can be much
more efficient than the general case, so Cloud@earerates different code for these
two cases.

» consistency. We have mentioned consistency icdnéext of creating transactions.
However, in building a Java view of the informatiarthe system, there is the
possibility of getting inconsistent information digseaccidents of timing between the
updates and reads. CloudTran provides the fast dngerously) and plodding
(correct, by using a distributed transaction onrdal to ensure consistency).

» error handling and timeouts. CloudTran uses apbphy of fail fast here. In other
words, any error causes a whole distributed agtteitboe aborted without retires (in
other words, "don't chase the acknowledgementhe et effect is that the
CloudTran features and philosophy make error hagdi a distributed environment
as simple as it can be.

» the optimistic locking pattern, which is necesdargupport the "go away and fill in
the insurance form" type of usage: the data usetidpctor may have changed in the

12 CloudTran Technical Overview

meantime. Although applications can choose to kkegomplete try locked (and this
is certainly possible in CloudTran), most archggatefer an optimistic locking.

CloudTran must generate a version counter for eatrd in the IMDG to support
this. Reflecting this to the database is not #yricecessary, so it is an option -
auditing and statistics gathering may find the linfation useful.

While there is a lot of detail in these featuresstrof them are hidden by the ORM.

We try to make the API as simple as possible:

* recognising there are conceptual differences iretheronment that must be exposed

* but taking advantage of the conceptual dependemcaimbase technology to make
the data specification easier.

9 Conclusion

There are increasing pressures on application®te o an IMDG approach, to meet
scalability and performance targets. Small dafdiegtions (using gigabytes) are economic
off-the-shelf today; large data applications casgpam the use of cloud secondary storage to
achieve a cost-effective solution.

However, the IMDG approach is fundamentally a neagmamming model. To bring this
approach into the mainstream, application prograramél require a layer of infrastructure
to provide usable cloud transactions, coordinadioim-memory and persistent stores, and
simplification of the programming environment.

CloudTran provides all the help application prognaens need in a single integrated package.
Whether application developers are looking to aghimmpetitive advantage by using
IMDGs or have simply run out of options, CloudTraakes the conversion to this new
approach low-risk and easy.

13 CloudTran Technical Overview

Appendix 1 — Performance Tests

As of this writing, very small distributed transacts commit at just over 2,000 transactions
per second in a fully-backed-up environment. Towefiguration for this test is :

» asingle (un-backed-up) client that starts the irequnumber of transaction threads
and has the logic to check that what is writtethatservice agrees with the database;

» a backed-up cohort running a 'service' that stadistributed transaction, enrols its
own node into the distributed transaction and {emorms the write of random
information (a price tick on one of a number otinments) before committing the
transaction;

» a backed-up transaction buffer, which receivestag and commit commands,
coordinates the distributed transaction and, asgmciusly, sends completed
transactions to persistent store - in this case/8QL database;

» the main boxes were Intel i7 920 single-socket (uatd-core) connected by GigaBit
Ethernet. The primary and backup copies of thexdamd transaction buffer nodes
were on different boxes, and so were the primari¢ke cohort and transaction
buffer. This meant that every inter-node messagat \&cross the wire.

The headline number before serious performancadunas about 300 transactions per
second. The biggest bottleneck we removed wasghesihread to transmit commit/abort
messages from the client to the cohort. This ntaeéransactions per second jump from 900
to over 2,000 per second. The other major charagetarun the right test program - the 300
figure was with a variant of the test program gcifically designed to cause interference
on specific records and test Isolation. Thergilisnsore performance improvement to do -
our test system was at less that 60% CPU utilisato 4,000 transactions per second peak
may be achievable.

The handling of logs (writes to a local file systgarotect against power failure) is also
crucial. The numbers quoted are for a ‘write lfidgracommit’ mode, so the client program
does not have to wait for the log before continuilige suspect this will be the most popular
mode of operation - but it does introduce a sea@rtd/o of unprotected time, in case of
complete power failure. For extremely valuablesactions, there is a 'write log before
commit’. This reduces the number of transacti@rsspcond to what the disk system can
handle; on our test system, this was around 258a&ciions per second. There is also a 'no
log' mode, which gives about 20% boost in perforoean

Along the same lines, we found a huge differengeeiriormance of MySQL depending on
whether transaction logging was enabled. If tasenabled - which is the default - the
MySQL engine can handle many 1000s of transacpensecond. If transaction logging is
enabled, the performance drops back to a few hdrndaesactions per second.

Doing performance testing has emphasised the negetect CloudTran from excessive
demands from clients. Without this, spikes in dechean cause throughput to drop; we also
have a worry, based on previous performance tedtiatjthe TCP/IP stack can deteriorate
under excessive load. We provide tuning paramétetsallow the cohort and transaction
buffer to internally retry to allocate resourcethiéy are not immediately available, in order to
reduce the number of possible retries and oveedlork traffic.

14 CloudTran Technical Overview

Appendix 2 — Positioning Relative to GigaSpaces XAP and
Storage as a Service
GigaSpaces XAP CloudTran SaaS
App Latency Sub-millisecond 10s of ms
App Throughput | > 20,000 tx / second | 1000s/ second 100's
Data Size 100's GB 100s GB multi-TB
Domain Model | <10 key classes > 20 classes n.a.

Values

Performance worth $m

Fast, reliable service

Low cost, big data

Quality of Service

Scalable, availability

Scalable, availability,
transactionality

Get what you pay for

15

CloudTran Technical Overview

